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Abstract

Recently some works are proposed to detect atomic ac-
tions of a single actor in unrealistic videos, such as movies.
But they cannot be effectively applied to activity detection in
surveillance videos. In this paper, we introduce an effective
three-stage framework for spatiotemporal activity localiza-
tion in surveillance videos. We devide the spatiotemporal
activity localization task into three subtasks: spatial activ-
ity localization, activity tube tracking, and temporal activ-
ity detection. For spatial activity localization, we general-
ize Faster-RCNN to 3D form to localize activity regions in
a short video clip. To the best of our knowledge, we are
the first to extend object detector to detect activity regions
in videos. For activity tube linking, we extend the object
tracking algorithm to track activity tubes. For temporal ac-
tivity localization, we build efficient temporal localization
systems to detect activity instances. Experiments on VIRAT
dataset demonstrate the effectiveness of our model. Besides,
our framework is efficient as we don’t need to process every
frame of videos. With this effective and efficient framework,
we got w pmiss@0.15rfa 0.693 on TRECVID-ActEV test set
in ActEV-Prize challenge.

1. Introduction

With the great power of CNN, we have witnessed ad-
vances in image classification, object detection and action
recognition in recent years. But the problem of identifying
and localizing activities in untrimmed videos is much more
challenging, especially in surveillance videos. We still have
not seen effective approaches to detection activities in con-
tinuous videos.

The VIRAT [21] dataset was introduced to advance ac-
tivity detection in continuous videos, it was collected from

realistic surveillance scenes. Several challenges make it
more difficult than other spatiotemporal action localization
dataset, eg., AVA [13]. The first challenge is that VIRAT
dataset focuses on detecting activities rather than actions of
a single person. Since many people and other objects may
get involved in one activity, it’s necessary to understand
the interaction among actors and the interaction among ac-
tor and objects. Secondly, the spatial range and temporal
length of activities vary drastically compared with actions
in AVA dataset, which makes methods [8, 10, 35] designed
for other datasets unsuitable for VIRAT. Thirdly, the spar-
sity and dense overlapping of activities both exist in VIRAT
dataset. On one hand, surveillance videos contain signif-
icant spans without any activities. On the other hand, ac-
tivities such as opening, entering, closing may oc-
cur sequentially and overlap with each other. Moreover, the
small size of actors makes VIRAT more challenging, which
explains why works [12, 37, 38] rely on frame-wise person
detection can’t perform well on VIRAT dataset.

In this work, we propose an effective three-stage frame-
work to handle this challenging task. We devide this chal-
lenging task into three sequential subtasks: spatial activ-
ity localization, activity tube tracking, and temporal activity
detection, each subtask is handled by a specific module in-
dependently. For spatial activity localization, we generalize
Faster-RCNN to 3D form to localize activity regions in a
short video clip, since 3D convolution can capture both ap-
pearance feature and motion feature and shows promising
results on video recognition. What’s important, we propose
to detect activity regions rather than actors, which greatly
simplify spatial activity localization problem as we don’t
need to generate activity regions based on detected actors.
Given activity tubes, we extend the object tracking algo-
rithm to track activity tubes. The Hungarian Algorithm [16]
is used to link tubes into activity tracks for later temporal
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detection. Finally, two effective temporal localization sys-
tems are built to detect activity instances on activity tracks.

To summarizes, our contributions are as followings: (1)
We propose an effective and efficient framework for spa-
tiotemporal activity localization in surveillance videos, ex-
periments on VIRAT dataset demonstrate the effectiveness
of our model. (2) We adapt Faster-RCNN into 3D form to
detect activity regions in a short video clip. To the best of
our knowledge, we are the first to extend object detector
to detect activity regions in videos. (3) We extend object
tracking algorithm to track activity tubes.

2. Related work
Action Recognition. Action recognition aims to classify

a trimmed video clip into actions of interest, which is fun-
damental to video understanding. Previous works [6, 30]
take raw images to get appearance information and optical
flow to get the motion feature and achieve fruitful results on
UCF101. Tran et al. [5] introduce 3D architecture to learn
spatiotemporal features by 3D ConvNets. Carreira et at. [2]
inflate 2D kernel of bn-inception to 3D kernel to model spa-
tiotemporal feature. Xie et at. [32] propose that 3D kernel
can be separated into 2D convolution on space and followed
with 1D convolution along the temporal axis without losing
accuracy and make network slighter and faster. Zolfaghari
et at. [39] advise ECO, which applies a 3D convolution
head on feature maps extracted by 2D convolution to trade
off expressiveness and computation costs. We use 3D con-
volution to extract spatiotemporal features for activity de-
tection.

Temporal Action Detection. The goal of temporal ac-
tion detection is to identify the start and end times as well as
the action label for each action instance in long, untrimmed
videos. There are two main different lines to address this
problem. One line of works predict action label at frame
level or segment level, then use these labels to find tem-
poral boundaries of actions [4, 17, 22, 34]. The other line
works generate proposals by densely distributed anchors at
first, then classify proposals into actions and refine propos-
als [3, 7, 26, 33, 36], which is inspired by recent region
based object detector. We follow the second line to build
our temporal action detection system.

Spatiotemporal Activity localization. A few deep
learning based algorithms have been proposed for activity
detection recently. [12, 27, 37, 38] detect objects at frame
level at first, then generate action proposals by data asso-
ciation or clustering, after that temporal action detection is
applied on action proposals. These approaches are limited
by frame-wise object detector. Besides, they are inefficient
because object detection needs to be performed frame by
frame. Recently some works try to utilize spatiotempo-
ral feature by 3D convolution [8, 9, 14, 15, 35], however,
most of them only focus on atomic action detection in actor-

centered video, eg., AVA dataset [13], thus can’t be applied
to detection activity in surveillance video. T-CNN [14] is
the closest to ours, they detect class-agnostic action tubes
by Tube Proposal Network(RPN), and classify each associ-
ated action track into action instance. However, they only
detect class-agnostic action tubes, which makes the linking
procedure more difficult. Besides, they just classify action
tracks into actions without temporal localization, which is
critical for activity detection.

Object Detection. Object detection is one of the key
components in computer vision. Modern deep-learning
based detector can be divided into two streams, one is
two-stage detectors including Faster-RCNN [24] and many
follow-up improvements. The two-stage detector use Re-
gion Proposal Network(RPN)[24] to generate proposals,
then classify proposals into objects of interest and perform
box refinement. The one-stage detector [19, 23] directly
predict boxes classes at every position of the feature map.
In this work, we generalize Faster-RCNN into 3D form to
utilize the spatiotemporal feature to detect activity regions
in video clips.

Data association. Data association is an important pro-
cedure of the multi-object tracking problem, which can be
formulated as a bipartite graph matching problem. Most
online processing methods use Hungarian Algorithm[16] or
minimum-cost-network-flow to solve this problem. In our
approach, we extend the task of object tracking to activity
tube tracking.

3. Approach and Models
Our three-stage framework is designed to detect activities

in surveillance videos. In section3.1, we firstly give a brief
analysis of activities in VIRAT dataset, then present our
overall framework and explain our design decisions. Then
we describe modules of each stage in detail in the following
sections.

3.1. Spatiotemporal activity localization framework

Activity analysis. According to the attributes of differ-
ent activities, we divide 18 activities into 3 groups, as il-
lustrated in Table1, ie., vehicle-person, turning,
person-centered. Activities of person-centered group
often last a long time. The appearance and motion pattern
of an activity are pretty similar at every segment, so that
we can distinguish these activities in a short glimpse. For
activities of turning and vehicle-person groups, their tem-
poral lengths vary widely, ranging from a fraction of a sec-
ond to dozens of seconds. Besides, they may overlap with
each other in space and time, thence it’s infeasible to distin-
guish an activity of these two groups except we have seen
the whole span of the activity.

To detect activities that vary widely in space and time
in surveillance videos, we design a three-stage detection
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Figure 1. The overall structure of our framework. We slice video
clips along the temporal axis and detect activity tubes of each clip
in space by 3D-Faster-RCNN with rough classification. Then,
activity tubes are linked into activity tracks by the data associa-
tion module. Tracks of different groups will be treat differently.
Vehicle-related tracks will be sent to the temporal activity detec-
tion module to detect fine-grained activity instances. Tracks of the
person-centered group will be submitted as final output.

Activities super-category
Closing vehicle-person
Closing trunk vehicle-person
Entering vehicle-person
Exiting vehicle-person
Loading vehicle-person
Open Trunk vehicle-person
Opening vehicle-person
Transport HeavyCarry person-centered
Unloading vehicle-person
Vehicle turning left turning
Vehicle turning right turning
Vehicle u turn turning
Pull person-centered
Riding person-centered
Talking person-centered
activity carrying person-centered
specialized talking phone person-centered
specialized texting phone person-centered

Table 1. According to the attributes of different activities, 18 ac-
tivities are divided into 3 groups.

framework, its overall structure is illustrated in Figures 1.
First of all, we localize possible activity regions of each
clip. A 32-frame sliding window is used to slice clips from
continuous videos with stride 16. We sample 8 frames

from each clip and put them into 3D-Faster-RCNN to de-
tect activity tubes with rough classification. The 3D-Faster-
RCNN is described in section 3.2. Notably, we treat ac-
tivity categories of vehicle-person group as one class, ac-
tivity categories of turning group as another class when
detecting activity regions. In other words, there are nine
categories of detection targets, ie., vehicle-person,
turning, Pull, Riding, Talking, Transport
HeavyCarry, activity carrying, specialized
talking phone, specialized texting phone.
Next, given activity tubes of these nine categories, we use
the Hungarian Algorithm to associate tubes into activity
tracks, which is described in section 3.3. Finally, we employ
different temporal detection approach for tracks of each ac-
tivity group. For tracks that belong to the person-centered
group, we directly output a track as an activity instance.
For tracks of the vehicle-person group, a two-stage tempo-
ral activity localization system is built to detect fine-grained
activity instance on tracks. Moreover, a one-stage tempo-
ral acitivity detection model is employed to detect activity
instances of turning group. The temporal detection part is
described in section 3.4.

3.2. 3D-Faster-RCNN

To detect activities in untrimmed videos, it’s imperative
to localize activity in space at first. To this end, we extend
the image object detector to localize activity regions in a
short video clip. Inspired by the success in object detec-
tion [24] and action recognition [2], we adapt Faster-RCNN
[24] into 3D form to utilize spatiotemporal feature, which
can significantly improve activity spatial localization per-
formance compared with single-frame detector.

For activity detection, appearance information and mo-
tion information are equally important. To better capture
the spatiotemporal information in video, we replace the
2D convolution backbone of Faster-RCNN with I3D. The
I3D is implemented by [31], who inflate 2D convolution of
ResNet50 into 3D convolution. The spatial resolution of
each Conv stage output feature map keep consistent with
ResNet, the temporal dimension is only downsampled once
at pool2 that following Conv2, we refer the reader to [31]
for more details.

FPN is adopted to fuse low-level appearance features
with high-level semantic features to facilitate small activ-
ity region detection, as most activities only occupy a small
part of a frame. To accumulate long-range information, we
squeeze the 4D feature map (channel × time× height×
width) to 3D (channel × height× width) at FPN lateral
connection by convolution and squeeze operation. There-
fore, the RPN and R-CNN head remain the same as [18].
Specifically, we inflate the lateral connection module from
2D convolution to 3D convolution with kernel (4, 1, 1) and
no padding, thus the time dimension of lateral connection
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output feature map would be 1, then squeeze operation is
applied to remove time dimension. Same as Faster-RCNN,
we use the cross-entropy loss for classification and smooth
L1 loss for region regression.

Discussion. We detect activity regions rather than ac-
tors, activity region is defined as a tight box that covers
every object that involved in specific activity over the clip
time span. We believe this will bring several benefits. The
first benefit is that the activity region is bigger than a per-
son area, thus more appearance features and motion features
are accumulated in the activity region, therefore it’s easier
to detect an activity region than an actor. The second one
is that we can model interactions among actors, which can
help detect activities that involved multi-actors. Models of
[8, 9, 14] are similar to our 3D-Faster-RCNN but differ-
ent in several ways: 1) FPN [18] is adopted in our network
to facilitate small targets detection. We argue that FPN is
important as most activities only occupy a small part of a
frame, whereas FPN is absent in theirs; 2) We perform de-
tection on the fused feature map of multiple frames rather
than sliced feature map [8, 9] to utilize long-range informa-
tion, which makes our network more effective.

3.3. Data association

Given activity tubes of nine categories, we then associate
them to activity tracks for spatiotemporal localization of the
entire video. We extend the task of object box tracking to
activity tube tracking, which can be formulated as a data
association problem. Inspired by [11], the Hungarian Algo-
rithm [16] is adopted to link tubes of adjacent clips. Activity
tubes can be represented as nodes of a bipartite graph. We
use Intersection over Union (IoU) between the two boxes of
adjacent clips as cost of edge.

Tubes of each category are processed separately. Given
activity tubes, we initialize tracks on the first clip, then up-
date tracks by tubes of the next clip that matched. Any tubes
that not matched to an existing activity track will instantiate
a new track.

This data association method is very light, and the main
computational overhead comes from calculating IoU. Com-
pared with other stages, the time cost can be ignored. Be-
sides, we find it is effective to link activity tubes.

3.4. Temporal activity localization

Given activity tracks produced by the data association
module, our next step is to perform temporal detection
based on tracks. We employ a different strategy for each
activity group. For tracks that belong to the person-centered
group, we have already known the specific category at the
spatial activity localization stage, thus no further analysis
required, we just recognize a track as an activity. For ac-
tivity tracks of vehicle-person and turning groups, multi-
ple activities of different subclasses may occur in one track,

Figure 2. Temporal activity detection pipeline for vehicle-person
activities. Multi-anchors are generated of every person at each
anchor point.

therefore further temporal detection and fine-grained clas-
sification are required. Our approaches for vehicle-person
and turning are similar but not identical, we will present
each approach separately in the following sections.

3.4.1 Vehicle-person activity detection

Given activity tracks of the vehicle-person group, we
detect fine-grained activity instance on these tracks. One
choice is just classify activity tracks into fine-grained
classes as [12, 14], but we find it’s sub-optimal for two rea-
sons: 1) Multiple activities may contain in one track, thus
it’s impossible to achieve high recall with few tracks. 2) Too
much background noise would be included if we just put an
entire track into the classifier. In our approach, we formu-
late this as a temporal activity detection task. A two-stage
temporal activity detection system is developed to detect ac-
tivity along the temporal axis on activity tracks.

Our vehicle-person activity detection system consists of
two stages, models of two stage are trained independently.
The first stage is an RPN-like module to propose possible
3D-proposals, named Time Region Proposal Network(T-
RPN). A 3D-anchor is sent through T-RPN to predict prob-
ability that the content of the anchor corresponds to a valid
activity and regress its time boundaries. T-RPN return
sparse 3D-proposals as we filter out most 3D-anchors that
”activityness” lower than a specific threshold. We set dif-
ferent thresholds during training and testing. The second
stage module classifies 3D-proposals into activities of inter-
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est or background and perform further time refinement, we
call it Time Regression ECO [40] (TR-ECO). Both stages
use ECO as the backbone, 16 frames evenly sampled from
an anchor or proposal are sent to the backbone network.
An extra branch is added to the final layer of ECO to pre-
dict temporal offsets relative to predefined anchors. No-
tably, our temporal regression of TR-ECO is independent
of category. We didn’t find better performance with class-
dependent temporal regression.

The proposal generation stage and activity classifica-
tion stage share a same form of multi-task loss. Same as
TAL-Net[3], we use cross-entropy loss of classification and
smooth L1 loss for temporal regression:

L =
∑
i

Lcls(pi, p
∗
i ) + λ

∑
i

[p∗i ≥ 1]Lreg(ti, t
∗
i ) (1)

where i is the index of an anchor or proposal in a mini-
batch. p is predicted probability of the proposal or activ-
ity, p* is ground-truth label, Lcls is the cross-entropy loss.
For regression, t is the predicted offset relative to anchor or
proposal, t∗ is ground-truth offset, and Lreg is the smooth
L1 loss. Offsets t is defined same as TAL-Net[3], we refer
reader to [3] for more details. We set λ = 0.2 for proposal
generation, λ = 1 for activity classification.

Anchor generation. As we can see from Figure2, multi-
ple persons may interact with the same vehicle and involved
in different activities in one track, therefore, it’s necessary
to process each person separately. Given activity tracks, we
define anchor points that evenly distributed on tracks along
the temporal axis with interval as 16 frames. At each anchor
point, 3D-anchors with 15 different time scales are gener-
ated for each person in the track, ie., {32, 40, 50, 64, 80,
101, 128, 161, 203, 256, 322, 406, 512, 645, 812} frames.
3D-anchors of the same person enjoy together the same spa-
tial location, which is defined as an enlarged square region
that centered at the person’s box. The size of the square
region is the short side of the track spatial region. As our
3D-Faster-RCN only detects union region of each activity, a
separately trained Faster-RCNN is used to detect persons. If
no person is detected at the anchor point, we just enlarge the
track region into square as the spatial location of anchors.

Chao et al. [3] have pointed that it’s sub-optimal to use
same features to classify multiple anchors, as the receptive
field is fixed but the temporal length of activities may vary
drastically. To avoid this problem, we evenly sample 16
frames from each anchor no matter how long the anchor is
and put them through T-RPN to predict ”activityness” score
and temporal offsets. Compared with TAL-Net, our net-
work has fewer parameters as we don’t need the multi-tower
network to deal with different anchor scales, thus overfitting
is alleviated.

3.4.2 Turning acitivity detection

Vehicle turning group consists of left turn, right turn, and
U-turn activities. We build a simple one-stage temporal ac-
tivity detection system to detect turning activity instances.
ECO is used to classify anchors into activity of interest or
background. We evenly sample 16 frames for each anchor.

Anchor generation. Given an activity track of turning
group, anchor points are evenly distributed on the track
along the temporal axis with interval as 48 frames. We gen-
erate 3 3D-anchors with time scales {64, 128, 256} at each
anchor point. The spatial location of each 3D-anchor is de-
fined as a tight box that covers the vehicle active area in the
anchor time range.

4. Experiments
In this section, we firstly introduce the VIRAT dataset

and the evaluation metric, then we present experiments of
each stage in detail in the following subsections.

4.1. VIRAT dataset

The VIRAT[21] dataset was introduced to assess the per-
formance of activity detection algorithms in realistic scenes.
The main scenes of the dataset are parking lots, streets and
other outdoor spaces. All 18 activities are listed in the first
column of Table 1. Boxes of persons and vehicles that in-
volved in each activity are annotated exhaustedly during ac-
tivity span, other objects, eg., bike, prop are partially anno-
tated. The train set contains 64 videos. The validate set has
54 videos.

4.2. ActEV metric

The performance is evaluated by the probability of
missed detection Pmiss at a fixed rate of false alarm per
minute RateFA. Detected activities are mapped to ground
truth by Hungarian Algorithm. A detected activity that
doesn’t correspond to any ground-truth activity is a false
alarm, a ground-truth activity that isn’t paired to any detec-
tion is a miss. For details of the evaluation metric, we refer
the reader to [1].

4.3. 3D-Faster-RCNN

A 32-frame sliding window with stride 16 is used to slice
clips during training and testing. To save GPN memory, we
sample 8 frames from a 32-frame clip at a regular interval
and put them through 3D-Faster-RCNN to detect activity
tubes in the clip. The target of 3D-Faster-RCNN is a tight
box that covers all objects that get involved in a specific
activity over the clip span. A box is kept only if the corre-
sponding activity span in this clip longer than 16 frames or
longer than half of the activity’s length.

Training. We initialize the RPN and Fast-RCNN heads
by Faster-RCNN that pretrained on COCO dataset [20].
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Figure 3. Spatial activity localization results. We can see there is
a significant improvement in each class over regular Faster-RCNN
that perform detection on a single frame.

Figure 4. P miss@0.15 for each activity category of validate set.

The I3D backbone is pretrained on Kinetics dataset [2].
Multi-scale training and horizontal flipping are used as data
augmentation. The short side of a clip is randomly scaled to
{832, 864, 896, 928, 960, 992, 1024, 1056}. We train on a
2-GPU machine where each GPU has 1 video clip as mini-
batch. The total batch size is 2. The model is trained on the
train set for 50000 steps with learning rate 0.0025 at first.
We finetune it on trainval union set for another 50000 steps
with learning rate 0.0025 for our final submitted results.

Inference. We scale the frame short side to 1056 at the
inference stage. A tube with a score lower than 0.05 are
filtered out. NMS is applied with threshold 0.1.

We evaluate the performance of 3D-Faster-RCNN by
mAP[20] on validate set, and get 22.6%. The AP of each
category on validate set is shown in Figure 3. We compare
our model with Faster-RCNN that perform detection on a
single frame to verify the effectiveness of our 3D-Faster-
RCNN. As we can see from Figure 3, there is a significant
improvement in each category.

4.4. Temporal activity localization

We present experiment details of vehicle-person and
turning activity detection separately.

4.4.1 Vehicle-person activity detection

Label assignment. For proposal generation, an an-
chor is assigned a positive label if it overlaps with a

ground-truth activity cuboid with temporal Intersection-
over-Union(tIoU) and spatial Interaction-over-Union(sIoU)
both higher than 0.7. An anchor is recognized as negative if
the tIoU is lower than 0.3 or the sIoU is lower than 0.3 with
all ground-truth activities. Anchors that neither are positive
nor negative are filtered out when training. For activity clas-
sification, a proposal is assigned the activity label of its most
overlapped ground-truth activity cuboid, if the tIoU and the
sIoU both higher than 0.5. Otherwise, a background label
is assigned.

We try diverse data augmentation methods to avoid over-
fitting. Center-corner cropping and scale jittering with hor-
izontal flipping are employed on scaled images. Images are
resized to 224× 224 before sending to the network.

Several design decisions are examined to make our
model perform better. We double the time span of all
category ground-truth activities except trunk-related activ-
ities to include more temporal context. Besides, Open
trunk, Close trunk are divided into four categories,
ie., Open trunk car, Close trunk car, Open
trunk pika, Close trunk pika, as we find trunk
of car and trunk of pika have opposite move direction.

Training. We train T-RPN on the train set for 10 epochs
with learning rate 0.001. We only use proposals with a score
higher than 0.15 as input to TR-ECO. For activity classifi-
cation, we train TR-ECO on the train set for 50 epochs with
a learning rate 0.001. The batch size of both stages are same
at 96. In order to mitigate the serious foreground and back-
ground sample imbalance problem, we set the foreground
and background sample ratio to 3:1 at both training stages.

Inference. Proposals with a score lower than 0.3 are fil-
tered out before sending them to TR-ECO when testing. We
ensemble activity classification results of epoch 20, 30, 40,
50. Spatiotemporal 3D-NMS is applied to ensembled re-
sults with spatial threshold 0.3 and temporal threshold 0.5.

4.4.2 Turning activity detection

Label assignment. An anchor is assigned the activity
label of its most overlapped groud-truth activity cuboid, if
both the tIoU and the sIoU are higher than 0.5. An anchor
is assigned a background label if the sIoU is lower than 0.3
or the tIoU is lower than 0.2 with all ground-truth activities.
Anchors that neither are positive nor negative are filtered
out during training.

The data augmentation of turning activity detection is the
same as vehicle-person activity detection except that there
is no horizon flipping. We train the network on the train set
for 40 epochs with a learning rate of 0.001. The 3D-NMS
is applied with spatial threshold 0.1 and temporal threshold
0.1 at the inference stage.
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4.5. Results

As we can see from Figure4 , our framework achieve
good results in most activity categories on the validation set.
However, the performance on specialized talking
phone and specialized texting phone is poor,
we think the reason is that actors are too small to distinguish
phone-related activities, and the lacking of training samples.
We get w pmiss@0.15rfa 0.693 on TRECVID-ActEV test
set in ActEV Prize Challenge.

5. Conclusion

In this paper, we introduce an effective and efficient
framework to detect activities in surveillance videos. Our
framework consists of three parts. We generalize Faster-
RCNN into 3D form to detect activity regions in a short
video clip, which shows promising results on the spatial
activity localization task. We extend object boxes track-
ing algorithm to track activity tubes, and it saves the cost
of pedestrian detection and tracking. Different approach is
employed for each activity group during the temporal activ-
ity detection stage.We believe that our approach has a strong
generalization ability that can be applied to many scenarios.
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